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Figure 3. Left: dependence of the H I angular power spectrum, ℓ(ℓ + 1)Cℓ/2π, with the dark energy equation of state, w. For larger w, the H I angular power
spectrum amplitude decreases and the BAO peaks move to larger scales. The opposite happens for smaller w: the amplitude increases and the BAO peaks move
to smaller scales. We plot the H I angular power spectrum at z = 0.3 with "ν = 7.5 MHz. Right: dependence of the H I angular power spectrum on redshift for
a fixed cosmology. For low redshifts (z < 0.2), the H I power, including the BAO peaks, is concentrated on large angular scales (ℓ < 100). For higher redshifts,
the H I power and the BAO peaks become more spread out in multipole space such that the H I signal contains now more power on small scales.

Figure 4. 2D likelihood contours for h and w for Planck (green) and Planck
plus BINGO for the optimal case without foregrounds (red). The significant
shrinking of the 2D contour that we obtain shows the power of BINGO data
to break the degeneracy between h and w with CMB data alone. The black
star corresponds to the baseline value of the parameters.

a degeneracy with $H I, since both change the overall amplitude
of the H I power spectrum. This degeneracy can be seen in Fig. 5.
This means that, by fixing $H I to its baseline value, we should
obtain a better constraint on w, which is indeed what we find:
w = −1.02 ± 0.02, which is a factor of 2 better than the reference
value of a 4 per cent uncertainty on w.

5.1.3 Massive neutrinos

The detection of solar and atmospheric neutrino oscillations proves
that neutrinos have mass (Ahmad et al. 2001; Fukuda et al. 1998),
with at least two species being non-relativistic today. The measure-
ment of the absolute neutrino mass scale is of interest for both
experimental particle physics and observational cosmology.

The main effect of total neutrino mass for CMB is around the
first acoustic peak and is due to the early integrated Sachs–Wolfe
effect (Lesgourgues & Pastor 2012). The total neutrino mass also
affects the angular diameter distance to last scattering, and can be

Figure 5. 2D likelihood contours for $H I and w for Planck plus BINGO
without foregrounds (green) and Planck plus BINGO with the foregrounds
cleaned by the GNILC method (red). The degeneracy between these two
parameters is evident: both affect the overall amplitude of the H I angular
power spectrum. Also note the bias on the parameters due to the slight
underestimation of the H I power by the GNILC method. The black star
corresponds to the baseline value of the parameters.

constrained through the angular scale of the CMB first acoustic
peak. However, this effect is degenerate with $% and h in flat
models. The use of CMB lensing or late-time measurements, like
the BAO peaks of the H I power spectrum, can help in reducing
this degeneracy. We therefore consider another extension of the
%CDM model with massive neutrinos. To do this, we let the sum of
neutrino masses,

∑
mν , to be a free parameter. Here, for simplicity,

we assume two massless and one massive neutrino with a mass
equal to

∑
mν .

Fig. 6 shows the improvement on the marginalized posterior
distributions for

∑
mν by considering BINGO plus Planck when

compared with the Planck case only. The 95 per cent upper limit
that we obtain on

∑
mν from using Planck only and combining

Planck with BINGO are
∑

mν < 0.79 eV [Planck], (23)
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CMB lensing

} BINGO sky 
survey

K

Cosmological
HI emission

Liccardo et al, arXiv:2107.01636

M. Remazeilles



CMB lensing

} BINGO sky 
survey

K

Astrophysical foregrounds obscure the signal 
Galactic free-free

emission
+ extragalactic radio

sources

Liccardo et al, arXiv:2107.01636

M. Remazeilles



CMB lensing

} BINGO sky 
survey

K

Astrophysical foregrounds obscure the signal 
Galactic synchrotron

emission

Liccardo et al, arXiv:2107.01636

M. Remazeilles



CMB lensing

Liccardo et al, arXiv:2107.01636

Astrophysical foregrounds obscure the signal 
! = 1100 MHz  /  % = 0.29

Synchrotron
Free-free

Anomalous microwave emission

Cosmological HI 21-cm signal

Huge amplitude 
discrepancies!

8 to 9 orders
of magnitude!
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Multi-frequency data

CMB

Synchrotron

Thermal dust

Inverse Problem

How to disentangle the various
components of emission contributing

to the set of observations?

30 GHz

100 GHz

353 GHz

Component Separation
Similar challenges to that of CMB data
General idea: frequency information
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CMB lensing

Distinct spectral signatures
Cosmological 21-cm signal

Multi-frequency BINGO observations should allow to disentangle 

cosmological 21-cm signal and astrophysical foregrounds

Fornazier et al, arXiv:2107.01637

Astrophysical foregrounds
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Peculiarities of 21-cm component separation

In contrast to CMB, the spectral signature
of the 21-cm signal is unknown/random!

→ 21-cm component separation methods 
reduce to foreground subtraction techniques

→ risk of losing part of the 21-cm signal by 
oversubtracting foregrounds

We need to think beyond spectral modelling to extract the 21-cm signal!

Cosmological 21-cm signal
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Peculiarities of 21-cm component separation

Cosmological 21-cm signal

We need to avoid making strong assumptions about foregrounds when 
the targeted signal is several orders of magnitude lower!

The so-called “spectral smoothness” of
the foregrounds is a myth!

→ Telescope systematics (e.g. standing waves)
break the “smoothness” of the foregrounds

→ Given the huge amplitude discrepancy 
between foregrounds and 21-cm signal, any 
small mismodeling of the foregrounds will 
result in large biases on the 21-cm signal

Fornazier et al, arXiv:2107.01637

Astrophysical foregrounds
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Peculiarities of 21-cm component separation
The 21-cm signal is mostly decorrelated between frequencies, while
foreground emissions are strongly correlated across frequencies

(De)correlation properties should be exploited to discriminate between 
foregrounds and 21-cm signal! 

Cosmological 21-cm signal Astrophysical foregrounds
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GNILC

GNILC (“Generalized Needlet Internal Linear Combination”) is an extension of the
blind ILC method which allows

q to break spectral degeneracies

e.g. cosmic infrared background (CIB) and Galactic thermal dust emissions

q to overcome lack of spectral information
e.g. cosmological 21-cm line emission

Remazeilles, Delabrouille, Cardoso, MNRAS 2011
Olivari, Remazeilles, Dickinson, MNRAS 2016 
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GNILC

q Use statistical / spatial information (power spectrum) to compensate any
lack of spectral information (e.g. unknown SED, spectral degeneracies)

q Blind, i.e. no assumption about astrophysical foregrounds

Sole prior assumption: power spectrum of the cosmological signal

qWavelet-based
Allows to optimize component separation depending on the local variations of
foregrounds and noise both across the sky and across angular scales

Remazeilles, Delabrouille, Cardoso, MNRAS 2011
Olivari, Remazeilles, Dickinson, MNRAS 2016 
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Planck 2013 map of Galactic dust

Our Galaxy

CIB contamination 
at small scales!

(background galaxies)

Planck 2013 results XI, A&A 2014
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Dust-CIB spectral degeneracy

q Fitting a modified blackbody spectrum to Planck multi-frequency 
data can’t help to disentangle thermal dust and CIB emissions

q GNILC goes beyond spectral modelling for component separation

q Unlike other methods which rely solely on spectral information, 
GNILC uses statistical information to discriminate dust and CIB

CIB and thermal dust have 
similar spectral signatures

(modified blackbody)
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Breaking the dust-CIB spectral degeneracy

But thermal dust and CIB have 
distinct angular power spectra!

CIB and thermal dust have 
similar spectral signatures

(modified blackbody)
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CIB auto/cross power spectra
as priors to GNILC

The statistics of CIB is significantly 
different from that of Galactic dust

(no assumption about Galactic dust)

M. Remazeilles

Planck 2013 results XXX, A&A 2014



Our Galaxy

CIB contamination 
at small scales!

(background galaxies)

Planck 2013 results XI, A&A 2014

Planck 2013 map of Galactic dust
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Our Galaxy

Planck intermediate results XLVIII, A&A 2016

Planck GNILC map of Galactic dust
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Planck GNILC map of CIB fluctuations
Planck intermediate results XLVIII, A&A 2016
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Planck 2013 dust Planck GNILC dust
(our Galaxy)

GNILC disentangles Galactic dust and CIB

Planck GNILC CIB
(background galaxies)

GNILC

Planck intermediate results XLVIII, A&A (2016)

Remazeilles, Delabrouille, Cardoso, MNRAS (2011)
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GNILC for 21-cm intensity mapping

Non-trivial spectral response (SED) of 21-cm signal

(mostly decorrelated across frequencies)

GNILC
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Figure 3. Left: dependence of the H I angular power spectrum, ℓ(ℓ + 1)Cℓ/2π, with the dark energy equation of state, w. For larger w, the H I angular power
spectrum amplitude decreases and the BAO peaks move to larger scales. The opposite happens for smaller w: the amplitude increases and the BAO peaks move
to smaller scales. We plot the H I angular power spectrum at z = 0.3 with "ν = 7.5 MHz. Right: dependence of the H I angular power spectrum on redshift for
a fixed cosmology. For low redshifts (z < 0.2), the H I power, including the BAO peaks, is concentrated on large angular scales (ℓ < 100). For higher redshifts,
the H I power and the BAO peaks become more spread out in multipole space such that the H I signal contains now more power on small scales.

Figure 4. 2D likelihood contours for h and w for Planck (green) and Planck
plus BINGO for the optimal case without foregrounds (red). The significant
shrinking of the 2D contour that we obtain shows the power of BINGO data
to break the degeneracy between h and w with CMB data alone. The black
star corresponds to the baseline value of the parameters.

a degeneracy with $H I, since both change the overall amplitude
of the H I power spectrum. This degeneracy can be seen in Fig. 5.
This means that, by fixing $H I to its baseline value, we should
obtain a better constraint on w, which is indeed what we find:
w = −1.02 ± 0.02, which is a factor of 2 better than the reference
value of a 4 per cent uncertainty on w.

5.1.3 Massive neutrinos

The detection of solar and atmospheric neutrino oscillations proves
that neutrinos have mass (Ahmad et al. 2001; Fukuda et al. 1998),
with at least two species being non-relativistic today. The measure-
ment of the absolute neutrino mass scale is of interest for both
experimental particle physics and observational cosmology.

The main effect of total neutrino mass for CMB is around the
first acoustic peak and is due to the early integrated Sachs–Wolfe
effect (Lesgourgues & Pastor 2012). The total neutrino mass also
affects the angular diameter distance to last scattering, and can be

Figure 5. 2D likelihood contours for $H I and w for Planck plus BINGO
without foregrounds (green) and Planck plus BINGO with the foregrounds
cleaned by the GNILC method (red). The degeneracy between these two
parameters is evident: both affect the overall amplitude of the H I angular
power spectrum. Also note the bias on the parameters due to the slight
underestimation of the H I power by the GNILC method. The black star
corresponds to the baseline value of the parameters.

constrained through the angular scale of the CMB first acoustic
peak. However, this effect is degenerate with $% and h in flat
models. The use of CMB lensing or late-time measurements, like
the BAO peaks of the H I power spectrum, can help in reducing
this degeneracy. We therefore consider another extension of the
%CDM model with massive neutrinos. To do this, we let the sum of
neutrino masses,

∑
mν , to be a free parameter. Here, for simplicity,

we assume two massless and one massive neutrino with a mass
equal to

∑
mν .

Fig. 6 shows the improvement on the marginalized posterior
distributions for

∑
mν by considering BINGO plus Planck when

compared with the Planck case only. The 95 per cent upper limit
that we obtain on

∑
mν from using Planck only and combining

Planck with BINGO are
∑

mν < 0.79 eV [Planck], (23)

MNRAS 473, 4242–4256 (2018)Downloaded from https://academic.oup.com/mnras/article-abstract/473/3/4242/4443203
by University of Manchester user
on 16 January 2018

Use prior information on 
21-cm power spectrum

Olivari, Remazeilles, Dickinson, MNRAS 2016
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GNILC in 6 main steps
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1. Needlet (spherical wavelet) decomposition of the BINGO sky maps

!" #
$%& !" ℓ,) ×+(-)(ℓ) !" ℓ,) × +(-)(ℓ) $%&

/0
!"- (#)

Bandpass filtering in harmonic space through needlet windows

×ℎ
(2) (ℓ) ×ℎ(3)(ℓ)

Component separation performed locally both across the sky and across the scales

GNILC

Wavelet scale: 1 Wavelet scale: 5

Remazeilles et al MNRAS 2011
Olivari et al MNRAS 2016
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GNILC

2. For each needlet scale (") and pixel $, compute the data covariance matrix 
across all pairs of frequencies %, '

(%'
(") $ = *

$+∈-($)
.%(") $+ .'

(") $+

For each pixel / and scale (0), ((")($) is a 1×1 matrix, 

where 1 is the number of frequency channels

Remazeilles et al MNRAS 2011
Olivari et al MNRAS 2016
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GNILC

3. Use theoretical priors on 21cm signal power spectra, !ℓ
#$%&,()*+)(-), 

across frequencies/redshifts to model the signal covariance matrix

• Use priors !ℓ
#$%&,()*+)(/) to simulate realisations of 21-cm signal maps 0 /()*+) 1

• Similarly to the data, the prior 21-cm realisations go through needlet decomposition: 0/()*+) 1 → 0/()*+),(3) 1

• For each needlet scale 4 and each pixel 5, compute the prior 21-cm signal covariance matrix:

678
()*+),(3) 1 = :

1;∈=(1)
07()*+),(3) 1; 08

()*+),(3) 1′

Remazeilles et al MNRAS 2011
Olivari et al MNRAS 2016
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4. Eigenvalue decomposition of the whitened data covariance matrix:

! = # + % ⟹ #'()*( +,-! #'()*( +,- ≃ / + #'()*( +,-% #'()*( +,-

#'()*( +,-! #'()*( +,- ≃ 01 02

1 + 4,
⋱ 1 + 46

1
⋱

1

017
027

GNILC

data signal foregrounds
+ noise

Remazeilles et al MNRAS 2011
Olivari et al MNRAS 2016
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4. Eigenvalue decomposition of the whitened data covariance matrix:

! = # + % ⟹ #'()*( +,-! #'()*( +,- ≃ / + #'()*( +,-% #'()*( +,-

#'()*( +,-! #'()*( +,- ≃ 01 02

1 + 4,
⋱ 1 + 46

1
⋱

1

017
027

GNILC

data signal foregrounds
+ noise

Those eigenvalues do not contain
relevant foreground power (8 ≃ 9).
Data are consistent with 21-cm signal.

Remazeilles et al MNRAS 2011
Olivari et al MNRAS 2016
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4. Eigenvalue decomposition of the whitened data covariance matrix:

! = # + % ⟹ #'()*( +,-! #'()*( +,- ≃ / + #'()*( +,-% #'()*( +,-

#'()*( +,-! #'()*( +,- ≃ 01 02

1 + 4,
⋱ 1 + 46

1
⋱

1

017
027

GNILC

data signal foregrounds
+ noise

Those eigenvalues do not contain
relevant foreground power (8 ≃ 9).
Data are consistent with 21-cm signal.

Those eigenvectors form a basis
of independent 21-cm modes

Remazeilles et al MNRAS 2011
Olivari et al MNRAS 2016
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4. Eigenvalue decomposition of the whitened data covariance matrix:

! = # + % ⟹ #'()*( +,-! #'()*( +,- ≃ / + #'()*( +,-% #'()*( +,-

#'()*( +,-! #'()*( +,- ≃ 01 02

1 + 4,
⋱ 1 + 46

1
⋱

1

017
027

GNILC

data signal foregrounds
+ noise

Those eigenvalues contain significant
power from the foregrounds.

Remazeilles et al MNRAS 2011
Olivari et al MNRAS 2016
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4. Eigenvalue decomposition of the whitened data covariance matrix:

! = # + % ⟹ #'()*( +,-! #'()*( +,- ≃ / + #'()*( +,-% #'()*( +,-

#'()*( +,-! #'()*( +,- ≃ 01 02

1 + 4,
⋱ 1 + 46

1
⋱

1

017
027

GNILC

data signal foregrounds
+ noise

Those eigenvalues contain significant
power from the foregrounds.

Those eigenvectors form an
orthonormal basis of 8
independent foreground modes.
(“foreground subspace”)

Remazeilles et al MNRAS 2011
Olivari et al MNRAS 2016

M. Remazeilles



4. Eigenvalue decomposition of the whitened data covariance matrix:

! = # + % ⟹ #'()*( +,-! #'()*( +,- ≃ / + #'()*( +,-% #'()*( +,-

#'()*( +,-! #'()*( +,- ≃ 01 02

1 + 4,
⋱ 1 + 46

1
⋱

1

017
027

GNILC

data signal foregrounds
+ noise

Those eigenvectors form an
orthonormal basis of 8
independent foreground modes.
(“foreground subspace”)

As highly correlated components of emission, 
foregrounds can thus be decomposed 

on a subset of 9 independent templates

Remazeilles et al MNRAS 2011
Olivari et al MNRAS 2016
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5. For each needlet scale (") and pixel $, estimate the effective dimension % ≡ %'()
" ($)

of the foreground subspace using Akaike Information Criterion (AIC)

%'()
" $ is the minimizer of 

'() % = +%+ -
./%01

2
3. − 5673. − 1

where 89 :;9;< are the eigenvalues of matrix =>?@A? BCDE =>?@A? BCD

GNILC Remazeilles et al MNRAS 2011
Olivari et al MNRAS 2016
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5. For each needlet scale (") and pixel $, estimate the effective dimension % ≡ %'()
" ($)

of the foreground subspace using Akaike Information Criterion (AIC)

GNILC Remazeilles et al MNRAS 2011
Olivari et al MNRAS 2016

Effective number *+,- of foreground components 

A&A 596, A109 (2016)

Fig. A.1. Local number of Galactic foreground degrees of freedom se-
lected by the AIC criterion at one degree angular scale (top), 200 scale
(middle), and 50 scale (bottom). The number of Galactic degrees of free-
dom decreases at high latitude and small angular scales.

A.4. Model selection with the Akaike information criterion

In Remazeilles et al. (2011b), the e↵ective number, m, of Galac-
tic components in each needlet domain was estimated by reject-
ing the eigenvalues in Eq. (A.22) that are smaller than 1.25, i.e.
for which the “noise” contributes to the observation by more than
80%. This criterion is somewhat arbitrary. In the present work,
we propose instead to use a statistical criterion to discriminate
between the “large” eigenvalues, tracing the Galactic signal, and
the “noisy” eigenvalues (⇡1) to be rejected; the e↵ective rank
of the covariance matrix of the Galactic signal is estimated by

Fig. A.2. Needlet windows acting as bandpass filters in harmonic space
(black lines), with the 50 beam transfer function overplotted (red line).

statistical model selection through the Akaike information crite-
rion (Akaike 1974).

For a given dimension, or model, m, if we assume that the
data, x, are independent and identically distributed according to
the Gaussian distributionN(0,R(m)), with R(m) = R f (m) +RN,
then the likelihood reads as

L ({xk}k |R(m)) =
nY

k=1

1p
2⇡ det R(m)

exp
(
�1

2
xT

k
R(m)�1xk

)
,

(A.33)

where n is the number of modes in the (needlet) domain consid-
ered. The log-likelihood can be written as

�2 logL =
nX

k=1

xT
k
R(m)�1xk � log det

⇣
R(m)�1

⌘
+ constant(m)

= n K

⇣
bR,R(m)

⌘
+ constant(m), (A.34)

where K

⇣
bR,R(m)

⌘
is the Kullback-Leibler divergence (Kullback

1968), measuring the spectral mismatch between the model co-
variance matrix, R(m), and the data covariance matrix, bR:

K

⇣
bR,R(m)

⌘
= Tr
⇣
bRR(m)�1

⌘
� log det

⇣
bRR(m)�1

⌘
� Nch. (A.35)

At this stage, it is interesting to note that the estimate of the
Galactic covariance matrix, bR f (m) computed in Eq. (A.25), is
nothing other than the maximum likelihood estimate, i.e. the
minimizer of the Kullback-Leibler divergence of Eq. (A.35),
as in SMICA (Delabrouille et al. 2003; Cardoso et al. 2008). The
proof is given in Sect. A.5.

In the region of the sky and the range of angular scales con-
sidered, we select the best rank value, m

⇤, among the class of
models, m, by minimizing the AIC

A(m) = 2 n m � 2 log (Lmax(m)) . (A.36)

Through the penalty, 2 n m, the AIC makes a trade-o↵ between
the goodness of fit and the complexity of the model. Let us
denote bR�1/2

N
bRbR�1/2

N = UDUT the diagonalization of the trans-
formed data covariance matrix, where

U = [US|UN] and D =
" bDS 0

0 bDN

#
. (A.37)
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Fig. A.1. Local number of Galactic foreground degrees of freedom se-
lected by the AIC criterion at one degree angular scale (top), 200 scale
(middle), and 50 scale (bottom). The number of Galactic degrees of free-
dom decreases at high latitude and small angular scales.

A.4. Model selection with the Akaike information criterion

In Remazeilles et al. (2011b), the e↵ective number, m, of Galac-
tic components in each needlet domain was estimated by reject-
ing the eigenvalues in Eq. (A.22) that are smaller than 1.25, i.e.
for which the “noise” contributes to the observation by more than
80%. This criterion is somewhat arbitrary. In the present work,
we propose instead to use a statistical criterion to discriminate
between the “large” eigenvalues, tracing the Galactic signal, and
the “noisy” eigenvalues (⇡1) to be rejected; the e↵ective rank
of the covariance matrix of the Galactic signal is estimated by

Fig. A.2. Needlet windows acting as bandpass filters in harmonic space
(black lines), with the 50 beam transfer function overplotted (red line).

statistical model selection through the Akaike information crite-
rion (Akaike 1974).

For a given dimension, or model, m, if we assume that the
data, x, are independent and identically distributed according to
the Gaussian distributionN(0,R(m)), with R(m) = R f (m) +RN,
then the likelihood reads as
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nY

k=1

1p
2⇡ det R(m)

exp
(
�1

2
xT

k
R(m)�1xk

)
,

(A.33)
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At this stage, it is interesting to note that the estimate of the
Galactic covariance matrix, bR f (m) computed in Eq. (A.25), is
nothing other than the maximum likelihood estimate, i.e. the
minimizer of the Kullback-Leibler divergence of Eq. (A.35),
as in SMICA (Delabrouille et al. 2003; Cardoso et al. 2008). The
proof is given in Sect. A.5.

In the region of the sky and the range of angular scales con-
sidered, we select the best rank value, m

⇤, among the class of
models, m, by minimizing the AIC

A(m) = 2 n m � 2 log (Lmax(m)) . (A.36)

Through the penalty, 2 n m, the AIC makes a trade-o↵ between
the goodness of fit and the complexity of the model. Let us
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wavelet scale: 1 wavelet scale: 3

Kind of PCA 
on steroids!
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6. Perform a (" −$%&')-dimensional ILC in the “21-cm signal subspace” 
to estimate the GNILC 21-cm maps

)*+,"&-' . = 0
+1
2 +, +1 4+1(5)

where  2 = 6(6789:6)9:6789: and  6 ≡ <:/> ?*

Foreground-cleaned estimates of 21-cm maps across frequencies!

GNILC Remazeilles et al MNRAS 2011
Olivari et al MNRAS 2016
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GNILC reconstruction of 21-cm signal

Olivari, Remazeilles, Dickinson, MNRAS 2016

Input 21-cm map GNILC 21-cm map Residuals
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GNILC reconstruction of 21-cm signal

Liccardo et al, arXiv:2107.01636

Input 21-cm map

GNILC 21-cm map

Residuals

-0.0005 0.0008

BINGO stripe
BINGO

simulations
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Power spectrum of GNILC 21-cm map 

Residual contamination
from each foreground

reduced below the signal
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Figure 12. Sensitivity to incorrect priors: H I prior (blue), input H I signal (black), recovered H I signal (green), and residual signal (red) at frequency
1117.5 MHz for the simulation 1 (H I, synchrotron with constant spectral index, and thermal noise) with 20 frequency channels when considering different
priors for the H I power spectrum. The prior in the first panel is given by a smooth H I power spectrum with the correct average amplitude for the H I signal, the
prior in the second panel is given by a smooth spectrum that overestimates the H I signal by a factor of 2.5, and the prior in the third panel is given by a smooth
spectrum that underestimates the H I signal by a factor of 2.

scales is equivalent to making a wrong assumption on the shape of
the H I power spectrum.

In our simulation 3, the standard PCA recovers the H I signal with
smallest bias when we choose the number of principal components
to be equal to 3 (Fig. 13). We note that the number of detected
principal components depends on the complexity of the foregrounds
and noise being simulated.

The main advantage of the GNILC method is that, unlike the
PCA, the number of principal components is estimated locally and
therefore varies with angular scale and location on the sky. The
reconstructed H I power spectra for the PCA, with different (2, 3,
and 9) principal components, and for the GNILC method are shown
in Fig. 13. In Table 4, we compare, for different ranges of multipoles,
the performance of the PCA with three principal components and of
the GNILC method. For each range of multipoles, we calculate the
average absolute difference between the input and the reconstructed
H I power spectrum normalized by the input H I power spectrum. We
see that the PCA performance is worse than the GNILC performance
by a factor of 5 on most angular scales (ℓ > 30). For very large
angular scales, ℓ < 30, PCA looks to better match the input H I

power spectrum than GNILC. This, however, only happens because
the PCA gives an arbitrary number of dimensions to the H I subspace
on these scales that is sufficient to reconstruct the H I power spectrum
with good accuracy. Note also that, as a consequence of its strictly
blind analysis, the PCA cannot have a strong confidence in the
reconstructed power on these scales.

Depending on the number of principal components that are re-
moved, the PCA either underestimate the H I power spectrum or is

strongly contaminated by residual foregrounds. It is never able to
accurately measure the H I power spectrum over the whole range of
scales. This is particularly true in our simulation where a large area
of the sky is observed. For being large, our observed sky includes
significant variations of the foregrounds with respect to the H I sig-
nal over the sky and over angular scales. The reason for the GNILC
method to reconstruct more accurately the H I power spectrum than
the PCA method for most of the angular scales is exactly what
differentiates them: the number of principal components is locally
determined, driven by the local signal-to-noise ratio, in harmonic
space by the GNILC method, while this number is fixed in all angu-
lar scales in the PCA method. Therefore, the GNILC method is able
to consider the variations with angular scale of the foregrounds plus
noise signal in reconstructing the H I signal, while the PCA method
is not.

5 C O N C L U S I O N S

In this work, we have introduced a new component separation tech-
nique for an H I intensity mapping experiment: the GNILC method.
As the GNILC method works in a wavelet space, it uses angular and
spatial information to recover the H I signal from the observed data.
Also, as the GNILC method is able to explore the H I signal sub-
space of the observation covariance matrix, it allows us to recover
the H I signal (not H I signal plus thermal noise) from the observed
data.

To test the GNILC method in a diverse set of experimental con-
ditions, we performed several simulations for a general H I intensity

MNRAS 456, 2749–2765 (2016)
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GNILC quite insensitive to 21-cm priors
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Foreground subtraction vs 21cm signal loss

Fornazier et al
arXiv:2107.01637

More aggressive foreground subtraction 
increases loss of 21-cm signal

Less aggressive foreground subtraction 
leaves residuals larger than the signal
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Takeaway
q GNILC goes beyond simple spectral modelling for component separation and 21-cm intensity mapping

q GNILC shows successful 21-cm signal reconstruction on various sky simulations of the BINGO experiment

q GNILC has already been intensively used on real Planck data and is at the heart of several Planck papers
Planck intermediate results XLVIII. Disentangling Galactic dust and cosmic infrared background anisotropies, A&A (2016)

Planck 2018 results IV. Diffuse component separation, A&A (2020)

Planck 2018 results XII. Galactic astrophysics using polarized dust emission, A&A (2020)

Let us ensure successful science 
return from BINGO with GNILC!
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