Component separation with GNILC for 21-cm line intensity mapping

Mathieu Remazeilles

Jodrell Bank Centre for Astrophysics

The University of Manchester

On behalf of the BINGO collaboration

Tomography of the large-scale structure through redshifted HI 21-cm line emission

Credit: BINGO collaboration

Browne, Astron. Geophys. (2014)

Browne, Astron. Geophys. (2014)

Tomography of the large-scale structure through redshifted HI 21-cm line emission

Radio wavelengths allow to probe larger redshift volumes as compared to optical surveys

Browne, Astron. Geophys. (2014)

Tomography of the large-scale structure through redshifted HI 21-cm line emission

Wuensche, and the BINGO collaboration (2019)

Radio wavelengths allow to probe larger redshift volumes as compared to optical surveys

Browne, Astron. Geophys. (2014)

Tomography of the large-scale structure through redshifted HI 21-cm line emission

BINGO will probe BAO and dark energy across redshifts 0.15 < z < 0.45

Galactic foregrounds obscure the 21-cm signal

Temperature fluctuations of the 21-cm signal

Astrophysical foregrounds obscure the signal

Astrophysical foregrounds obscure the signal

Astrophysical foregrounds obscure the signal

Liccardo et al, arXiv:2107.01636

Component Separation

Similar challenges to that of CMB data Multi-frequency data General idea: frequency information 30 GHz **CMB Inverse Problem** 100 GHz Synchrotron How to disentangle the various components of emission contributing to the set of observations? 353 GHz Thermal dust M. Remazeilles

Distinct spectral signatures

Astrophysical foregrounds

Cosmological 21-cm signal

Multi-frequency BINGO observations should allow to disentangle cosmological 21-cm signal and astrophysical foregrounds

M. Remazeilles

Peculiarities of 21-cm component separation

In contrast to CMB, the spectral signature of the 21-cm signal is unknown/random!

- → 21-cm component separation methods reduce to foreground subtraction techniques
- \rightarrow risk of losing part of the 21-cm signal by oversubtracting foregrounds

Cosmological 21-cm signal

We need to think beyond spectral modelling to extract the 21-cm signal!

Peculiarities of 21-cm component separation

The so-called "spectral smoothness" of the foregrounds is a myth!

- → Telescope systematics (e.g. standing waves) break the "smoothness" of the foregrounds
- → Given the huge amplitude discrepancy between foregrounds and 21-cm signal, any small mismodeling of the foregrounds will result in large biases on the 21-cm signal

Astrophysical foregrounds

We need to avoid making strong assumptions about foregrounds when the targeted signal is several orders of magnitude lower!

Peculiarities of 21-cm component separation

The 21-cm signal is mostly decorrelated between frequencies, while foreground emissions are strongly correlated across frequencies

(De)correlation properties should be exploited to discriminate between foregrounds and 21-cm signal!

Remazeilles, Delabrouille, Cardoso, MNRAS 2011 Olivari, Remazeilles, Dickinson, MNRAS 2016

GNILC ("Generalized Needlet Internal Linear Combination") is an extension of the blind ILC method which allows

- to break spectral degeneracies
 - e.g. cosmic infrared background (CIB) and Galactic thermal dust emissions
- ☐ to overcome lack of spectral information
 - e.g. cosmological 21-cm line emission

Remazeilles, Delabrouille, Cardoso, MNRAS 2011 Olivari, Remazeilles, Dickinson, MNRAS 2016

- □ Use statistical / spatial information (power spectrum) to compensate any lack of spectral information (e.g. unknown SED, spectral degeneracies)
- Blind, i.e. no assumption about astrophysical foregrounds
 Sole prior assumption: power spectrum of the cosmological signal

Wavelet-based

Allows to optimize component separation depending on the local variations of foregrounds and noise both across the sky and across angular scales

Planck 2013 map of Galactic dust

Dust-CIB spectral degeneracy

CIB and thermal dust have similar spectral signatures (modified blackbody)

- ☐ Fitting a modified blackbody spectrum to *Planck* multi-frequency data can't help to disentangle thermal dust and CIB emissions
- ☐ GNILC goes beyond spectral modelling for component separation
- ☐ Unlike other methods which rely solely on spectral information, GNILC uses statistical information to discriminate dust and CIB

Breaking the dust-CIB spectral degeneracy

CIB and thermal dust have similar spectral signatures (modified blackbody)

But thermal dust and CIB have distinct angular power spectra!

CIB auto/cross power spectra as priors to GNILC

The statistics of CIB is significantly different from that of Galactic dust

(no assumption about Galactic dust)

Planck 2013 results XXX, A&A 2014

Planck 2013 map of Galactic dust

Planck GNILC map of Galactic dust

M. Remazeilles

MJy.sr⁻¹

Planck GNILC map of CIB fluctuations

GNILC disentangles Galactic dust and CIB

Planck GNILC dust (our Galaxy)

Planck intermediate results XLVIII, A&A (2016)

Remazeilles, Delabrouille, Cardoso, MNRAS (2011)

GNILC for 21-cm intensity mapping

Olivari, Remazeilles, Dickinson, MNRAS 2016

Non-trivial spectral response (SED) of 21-cm signal (mostly decorrelated across frequencies)

Use prior information on 21-cm power spectrum

GNILC in 6 main steps

1. Needlet (spherical wavelet) decomposition of the BINGO sky maps

$$d_{\nu}(\vec{n}) \xrightarrow{\mathsf{SHT}} d_{\nu}(\ell, m) \xrightarrow{\times h^{(j)}(\ell)} d_{\nu}(\ell, m) \times h^{(j)}(\ell) \xrightarrow{\mathsf{SHT}^{-1}} d_{\nu}^{(j)}(\vec{n})$$

Bandpass filtering in harmonic space through needlet windows

Component separation performed locally both across the sky and across the scales

2. For each needlet scale (j) and pixel \vec{n} , compute the data covariance matrix across all pairs of frequencies a, b

$$C_{ab}^{(j)}(\vec{n}) = \sum_{\vec{n}' \in \mathfrak{D}(\vec{n})} d_a^{(j)}(\vec{n}') d_b^{(j)}(\vec{n}')$$

For each pixel \vec{n} and scale (j), $C^{(j)}(\vec{n})$ is a $N \times N$ matrix, where N is the number of frequency channels

- 3. Use theoretical priors on 21cm signal power spectra, $C_{\ell}^{21\text{cm,prior}}(v)$, across frequencies/redshifts to model the signal covariance matrix
- Use priors $C_{\ell}^{21 \text{cm,prior}}(v)$ to simulate realisations of 21-cm signal maps $s_{\nu}^{\text{prior}}(\vec{n})$
- Similarly to the data, the prior 21-cm realisations go through needlet decomposition: $s_{\nu}^{\mathrm{prior}}(\vec{n}) \to s_{\nu}^{\mathrm{prior},(j)}(\vec{n})$
- For each needlet scale (j) and each pixel \vec{n} , compute the **prior 21-cm signal covariance matrix**:

$$S_{ab}^{\text{prior},(j)}(\vec{n}) = \sum_{\vec{n}' \in \mathfrak{D}(\vec{n})} s_a^{\text{prior},(j)}(\vec{n}') s_b^{\text{prior},(j)}(\vec{n}')$$

$$C = S + N \Rightarrow (S^{\text{prior}})^{-\frac{1}{2}} C(S^{\text{prior}})^{-\frac{1}{2}} \simeq I + (S^{\text{prior}})^{-\frac{1}{2}} N(S^{\text{prior}})^{-\frac{1}{2}}$$

$$(S^{\text{prior}})^{-\frac{1}{2}} C(S^{\text{prior}})^{-\frac{1}{2}} \simeq (U_N | U_S)$$

$$(S^{\text{prior}})^{-\frac{1}{2}} C(S^{\text{prior}})^{-\frac{1}{2}} \simeq (U_N | U_S)$$

$$(S^{\text{prior}})^{-\frac{1}{2}} C(S^{\text{prior}})^{-\frac{1}{2}} \simeq (U_N | U_S)$$

4. Eigenvalue decomposition of the whitened data covariance matrix:

Those eigenvalues contain significant power from the **foregrounds**.

4. Eigenvalue decomposition of the whitened data covariance matrix:

Those eigenvectors form an orthonormal basis of *m* independent foreground modes. ("foreground subspace")

As highly correlated components of emission, foregrounds can thus be decomposed on a subset of m independent templates

5. For each needlet scale (j) and pixel \vec{n} , estimate the effective dimension $m \equiv m_{
m AIC}^{(j)}(\vec{n})$ of the foreground subspace using Akaike Information Criterion (AIC)

 $m_{ ext{AIC}}^{(j)}(ec{n})$ is the minimizer of

AIC[m] = 2m +
$$\sum_{i=m+1}^{N} (\mu_i - \log \mu_i - 1)$$

where $\{\mu_i\}_{1 \le i \le N}$ are the eigenvalues of matrix $(S^{\text{prior}})^{-\frac{1}{2}}C(S^{\text{prior}})^{-\frac{1}{2}}$

5. For each needlet scale (j) and pixel \vec{n} , estimate the effective dimension $m \equiv m_{\rm AIC}^{(j)}(\vec{n})$ of the foreground subspace using Akaike Information Criterion (AIC)

Effective number m_{AIC} of foreground components

6. Perform a $(N - m_{AIC})$ -dimensional ILC in the "21-cm signal subspace" to estimate the GNILC 21-cm maps

$$\widehat{s}_{\nu}^{\text{GNILC}}(\overrightarrow{n}) = \sum_{\nu\prime} W(\nu,\nu') \ d_{\nu\prime}(p)$$
 where $W = A(A^TC^{-1}A)^{-1}A^TC^{-1}$ and $A \equiv S^{1/2} \ U_S$

Foreground-cleaned estimates of 21-cm maps across frequencies!

GNILC reconstruction of 21-cm signal

Olivari, Remazeilles, Dickinson, MNRAS 2016

GNILC reconstruction of 21-cm signal

Liccardo et al, arXiv:2107.01636

Power spectrum of GNILC 21-cm map

BINGO simulations

Fornazier et al, arXiv:2107.01637

No Noise Residuals for (m_{AIC})

GNILC versus PCA

GNILC quite insensitive to 21-cm priors

Olivari, Remazeilles, Dickinson, MNRAS 2016

Foreground subtraction vs 21cm signal loss

More aggressive foreground subtraction increases loss of 21-cm signal

Less aggressive foreground subtraction leaves residuals larger than the signal

GNILC with AIC value $m_{\rm AIC}$ finds the sweet spot!

Fornazier et al arXiv:2107.01637

Takeaway

- lacktriangle GNILC goes beyond simple spectral modelling for component separation and 21-cm intensity mapping
- ☐ GNILC shows successful 21-cm signal reconstruction on various sky simulations of the BINGO experiment
- \Box GNILC has already been intensively used on real *Planck* data and is at the heart of several *Planck* papers

Planck intermediate results XLVIII. Disentangling Galactic dust and cosmic infrared background anisotropies, A&A (2016) Planck 2018 results IV. Diffuse component separation, A&A (2020)

Planck 2018 results XII. Galactic astrophysics using polarized dust emission, A&A (2020)

Let us ensure successful science return from BINGO with GNILC!