Cosmic Microwave Background: current status and next challenges

First light released in the Universe

Most perfect blackbody ever measured

No further measurement since COBE / FIRAS in the 90s!

CMB temperature anisotropies from Planck

Temperature anisotropies $\delta T/T \sim 10^{-5}$ around the mean blackbody at T=2.725~K

CMB polarization anisotropies from Planck

E-mode dominated, tracing mostly scalar (density) primordial perturbations

CMB statistics: A sensitive cosmological probe

The CMB power spectrum is shaped by the underlying cosmological parameters

6-parameter Λ CDM model perfectly fits the data

ΛCDM parameters

Sub-percent precision on many parameters!

derived parameters

Parameter	Planck alone	Planck + BAO
$\Omega_{ m b} h^2 \ldots \ldots$	0.02237 ± 0.00015	0.02242 ± 0.00014
$\Omega_{\rm c}h^2$	0.1200 ± 0.0012	0.11933 ± 0.00091
$100\theta_{\mathrm{MC}}$	1.04092 ± 0.00031	1.04101 ± 0.00029
τ	0.0544 ± 0.0073	0.0561 ± 0.0071
$ln(10^{10}A_s) \ldots$	3.044 ± 0.014	3.047 ± 0.014
$n_{\rm s}$	0.9649 ± 0.0042	0.9665 ± 0.0038
$\overline{H_0 \ldots \ldots}$	67.36 ± 0.54	67.66 ± 0.42
Ω_{Λ}	0.6847 ± 0.0073	0.6889 ± 0.0056
$\Omega_m \ \dots \dots \dots$	0.3153 ± 0.0073	0.3111 ± 0.0056
$\Omega_{m}h^{2}\ldots\ldots$	0.1430 ± 0.0011	0.14240 ± 0.00087
$\Omega_{\rm m}h^3\ldots\ldots$	0.09633 ± 0.00030	0.09635 ± 0.00030
$\sigma_8 \dots \dots$	0.8111 ± 0.0060	0.8102 ± 0.0060
$\sigma_8(\Omega_m/0.3)^{0.5}$	0.832 ± 0.013	0.825 ± 0.011
Z _{re}	7.67 ± 0.73	7.82 ± 0.71
Age[Gyr]	13.797 ± 0.023	13.787 ± 0.020
$r_*[Mpc] \dots$	144.43 ± 0.26	144.57 ± 0.22
$100\theta_*$	1.04110 ± 0.00031	1.04119 ± 0.00029
$r_{\rm drag}[{ m Mpc}] \ldots \ldots$	147.09 ± 0.26	147.57 ± 0.22
$z_{\rm eq} \dots \dots$	3402 ± 26	3387 ± 21
$k_{\rm eq}[{\rm Mpc}^{-1}]\dots$	0.010384 ± 0.000081	0.010339 ± 0.000063
$\overline{\Omega_K}$	-0.0096 ± 0.0061	0.0007 ± 0.0019
$\Sigma m_{\nu} [\text{eV}] \ldots$	< 0.241	< 0.120
N_{eff}	$2.89^{+0.36}_{-0.38}$	$2.99^{+0.34}_{-0.33}$
$r_{0.002}$	< 0.101	< 0.106

40.0 - EE

20.0 - EE

10.0 - 30.0 - EE

10.0 - 30.0 - 20.0

Planck Collaboration I, A&A (2020)

Current state of CMB observations

- TT cosmic-variance limited
- Total of 24 acoustic peaks in TT, EE, and TE
- Lensing BB signal successfully observed
- Primordial BB signal (GWs) not yet detected
- All CMB data consistent with standard ∧CDM

M. Remazeilles

Geometry & Content

- Spatially flat Universe: $\Omega_{\rm K}$ = 0.0007 ± 0.002
- Slightly slower-expanding Universe: H₀ = (67.7 ± 0.4) km s⁻¹ Mpc⁻¹
- Slightly more baryonic (4.9%) and dark (26.5%) matter
- Slightly less dark energy: 68.5%
- Only three neutrino species: $N_{eff} = 3.0 \pm 0.2$
- No sign of neutrino mass: Σm_v < 0.13 eV (95% CL)
- No sign of primordial gravitational waves: r < 0.11 (95% CL)

Consistency with other cosmological data...

Matter power spectrum

Consistent picture between CMB and LSS on linear matter power spectrum and BAOs

Planck Collaboration I (2020)

BBN primordial He & D abundance

Consistent picture between BBN and CMB on primordial element abundance and baryon density

Planck Collaboration VI (2020)

But some intriguing tensions

 5σ tension between CMB (Λ CDM) and low-redshift direct probes

2σ tension between CMB and low-redshift LSS probes

(See V. Poulin's talk)

- New physics beyond ΛCDM?
- Systematics?

Initial Conditions

- Spatially **flat** Universe,
- where scalar (density) perturbations are Gaussian
- and adiabatic,
- with nearly scale-invariant (red) power spectrum
- following a power-law

$$\Omega_{\rm K}$$
 = 0.0007 ± 0.0019

$$f_{\rm NL}^{\rm local} = -0.9 \pm 5.1$$

$$\alpha_{-1} = 0.0001 \pm 0.0004$$

$$n_{\rm s} = 0.9649 \pm 0.0042$$

$$dn_{\rm s}/d\ln k = 0.004 \pm 0.007$$

Evidence towards single-field slow-roll inflation...

But no reported detection of primordial gravitational waves yet

Initial Conditions

- CMB data rule out many inflation models (convex inflaton potentials now excluded)
- $r = P_T/P_S < 0.032$ (95% CL) BK18+Planck PR4 (Tristram et al 2022)
- Starobinsky's R^2 and Higgs inflation models with $r \sim 0.003$ still allowed

BICEP2/Keck Collaboration, PRL 2021

Outstanding Questions

- What is missing in ΛCDM that explains current tensions?
- Did inflation happen in the early Universe and produce a background of primordial gravitational waves?
- When did the Universe reionize to form the first stars?
- What are the neutrino masses and their hierarchy?
- Are there extra light relics besides neutrinos?
- What is the relationship between baryonic and dark matter?

Exploring new CMB observables

CMB E- and B-mode polarization

CMB secondary anisotropies

CMB spectral distortions

Primary CMB E-/B-mode anisotropies

τ

Deficit of large-scale E-mode if delayed reionization

Excess of large-scale B-mode depending on inflation energy scale

Additional light relics further smooth and shift acoustic peaks

Small-scale deficit of lensing B-mode if $\Sigma m_v \neq 0$

Current state of B-mode observations

BK18 + Planck PR4

r < 0.032 (95% CL)

Tristram et al, PRD 2022

The B-mode polarization challenge

Evidence for primordial GWs requires detecting both reionization and recombination peaks

- Subtract > 99% foregrounds (reionization peak)
- Achieve ~ 90% delensing (recombination peak)
- Reionization peak achievable only from full-sky space survey

The LiteBIRD space mission

(See M. Lattanzi's talk)

- Both reionization and recombination peaks of the B-mode spectrum
- 5σ detection of both peaks if r=0.01 Total uncertainty $\delta r < 0.001$ if r=0
- 15 frequency bands over 40-402 GHz to control foregrounds
- Expected launch in 2032 (JFY)

The LiteBIRD space mission

(See M. Lattanzi's talk)

- CV-limited measurement of E-modes and optical depth to reionization τ
- 5σ detection of $\Sigma m_v = 0.06$ eV
- Resolving neutrino mass hierarchy

(See M. Gerbino's talk)

Secondary CMB anisotropies

Scattering by hot gas

Sunyaev-Zeldovich (SZ) effect

Baryon distribution with kinetic SZ effect

Kinetic SZ (kSZ)

Thermal SZ (tSZ)

- kSZ effect is a reliable tracker of the missing baryons extending beyond dark matter haloes
- tSZ biased towards measuring hot gas
- kSZ probes the full baryon density, irrespective of the gas temperature!
- + neutrino masses, dark energy

High-resolution CMB surveys ($\ell > 5000$) like SO and CMB-S4 are essential to overcome the kSZ-CMB spectral degeneracy

Correlated tracers of matter distribution

(See G. Fabbian's talk)

- Cross-correlations with LSS surveys
- Extract galaxy biases out of ratios between auto- and cross-spectra
- Get rid of instrumental systematics

CMB Spectral Distortions

Recognized by ESA Voyage 2050 as a potential probe for a future L-class mission

Small departures from a perfect blackbody?

CMB Spectral Distortions

• μ -distortion: signature of photon energy release by physical processes occurring at redshifts $z>10^4$

- Distortions from H and He recombination lines
- Direct probe of first atoms & recombination physics

CMB Spectral Distortions

- μ -distortion: signature of photon energy release by physical processes occurring at redshifts $z>10^4$
- Intermediate-shape distortions can inform us on the lifetimes of decaying particles

- Distortions from H and He recombination lines
- Direct probe of first atoms & recombination physics

A peek behind the last-scattering surface

Some physics leading to spectral distortions:

Damping of primordial acoustic modes

Decaying/Annihilating relic particles

Primordial black hole evaporation

Cosmological recombination lines

Probing inflation with spectral distortions

Primordial power spectrum mostly unknown at scales $k > 3 \text{ Mpc}^{-1}$

- ☐ CMB: k > 0.2 Mpc⁻¹ erased by Silk damping
- □ LSS: k > 0.2 Mpc⁻¹ enter non-linear regime
- □ Spectral distortions extend our lever arm up to k > 10⁴ Mpc⁻¹ in the linear regime

Chluba et al, 2021

CMB obscured by foreground emissions

Weaker CMB signals, higher sensitivities

Much more sensitive to imperfect foreground modelling!

Galactic foregrounds vs CMB B-mode

Credit: BeyondPlanck

- For r < 0.01, both dust and synchrotron dominate over the primordial CMB B-mode signal across all frequencies, all angular scales, and all sky regions
- Huge amplitude discrepancies between the signal and the foregrounds
- Minor foreground uncertainties ⇒ large errors on r!

New foreground challenges

- **□** Spectral mismodelling of the foregrounds
- Spectral distortions of the foregrounds
- Spectral degeneracies
- ☐ Foregrounds correlated with the signal of interest

Spectral mismodelling of the foregrounds

- Foregrounds poorly known at targeted signal sensitivity levels (r ~ 10⁻³)
- Discrepancies between plausible dust models >> CMB B-mode (r ~ 10⁻³)
- Unknown foregrounds: AME polarization? Magnetic dust?

(see talk by López-Caraballo)

Impact on r of mismodelling two dust modified blackbodies as a single one

Remazeilles et al 2016

Tiny modelling errors on foregrounds = Large error / bias on r!

Spectral distortions of foregrounds

Line-of-sight averaging and beam averaging distort the expected SED of the foregrounds

$$\nu^{\beta_1} B_{\nu}(T_1) + \nu^{\beta_2} B_{\nu}(T_2) \neq \nu^{\langle \beta \rangle} B_{\nu}(\langle T \rangle)$$

Chluba et al 2017 Remazeilles et al 2021

Tiny distortions to the foregrounds >> CMB B-mode & CMB spectral distortions

Spectral degeneracies

Need to think beyond spectral modelling for component separation

Extragalactic foregrounds to CMB x LSS

Extragalactic foregrounds (SZ, CIB) → Spurious correlations in CMB x LSS

Conclusions

- Standard Λ CDM model fits all available CMB data with sub-percent precision, but tensions on H₀ and σ_8 with low-redshift probes still need to be understood
- Evidence towards single-field inflation, but primordial gravitational waves still need to be discovered
- Bright future for CMB cosmology with upcoming sensitive CMB experiments from space and ground (LiteBIRD, Simons Observatory, CMB-Stage 4)
- Still a lot to learn from CMB polarization, CMB secondary anisotropies, and CMB spectral distortions
- Weaker signals and higher sensitivities imply new foreground challenges!